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Abstract– This paper considers the prototyping of a BCH 
(Bose, Chaudhuri, and Hocquenghem) encoder and 
decoder using FPGA  (Field Programmable Gate Array). 
BCH codes can be defined by two parameters that are 
code size n and the number of errors to be corrected t. 
FPGA is a reprogramable chip. Designing on FPGA is 
very fast, easy to modify and suitable for prototyping 
products. This research is our preliminary research on 
implementation BCH coding in FPGA.  

The results show that the circuits work well, any 1 
bit error in any position of 7 bits has been corrected.  
Our next project is to build 3 bits error correction of 5 
bit data, and BCH code size will be 15 bits. 
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I. INTRODUCTION 
 

rror Correcting Control is very important in modern 
communication systems. There are two correcting 

codes, that are BCH (Bose, Chaudhuri, and Hocquenghem) 
and RS (Reed-Solomon) codes, are being widely used in 
satellite communications, computer networks, magnetic and 
optic storage systems. 

This paper considers the prototyping of a BCH encoder 
and decoder using FPGA  (Field Programmable Gate 
Array). BCH codes operate over finite fields or Galois 
fields. BCH codes can be defined by two parameters that 
are code size n and the number of errors to be corrected t.  
BCH codes employ sophisticated algorithm and their 
hardware implementation is rather burdensome. For 
software implementation is rather slow, consumes more 
power and less reliable than hardware implementation [1]. 

 FPGA is a reprogramable chip. A design in FPGA can 
be automatically converted from gate level into layout 
structure by place and route software. Xilinx Inc. offer a 
wide range of components, for example, XC4013 offer 
13,000 equivalent Nand gates on 546 CLBs (Configured 

Logic Blocks). Designing on FPGA is very fast, easy to 
modify and suitable for prototyping products, because they 
are rather expensive and therefore are not economical for 
mass production [2]. Using ASIC (Application Specific 
Integrated Circuit) implementation might be more 
appropriate for mass-products, but designing with ASIC is 
more complex and takes much longer time. 

The importance of BCH codes stems from the fact that 
they are capable of correcting all random patterns of t errors 
by decoding algorithm that is simple and easily 
implemented with a reasonable amount of equipment 
[Rhee]. 

This research is our preliminary research on 
implementation BCH coding in FPGA. To simplify the 
circuit design we have developed one bit correcting circuit. 
For one bit correction, BCH code need to generate 3 bits 
parity for 4 bits data, so the length word or code size is 7 
bits, this mode usually called (7,4) BCH code.   
 

II. BASIC THEORY 
 

 Error control codes rely to a large extent on powerful 
and elegant algebraic structures called finite fields. A field 
is essentially a set of elements in which it is possible to add, 
subtract, multiply and divide field elements and always 
obtain another element within the set. A finite field is a field 
containing a finite number of elements. 
 A field F is a non-empty set of elements with two 
operators usually called addition and multiplication, 
denoted “+” and “*” respectively. For F to be a field a 
number of conditions must hold [Shu Lin] : 
1. Closure; For every a,b in F 

badbac *; =+=          (1) 
    Where c, d ∈ F. 
2. Associative; For every a,b,c in F 

cbacba
cbacba

*)*()*(*
;)()(

=
++=++     (2) 

3. Identity; There exists an identity element ‘0’ for addition 
and ‘1’ for multiplication that satisfy 

E 
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   for every a in F. 
4. Inverse; If a is in F, there exist elements b and c in F 

such that 
1*;0 ==+ caba                 (4) 

Element b is called the additive inverse, b = (-a), 
element c is called the multiplicative invers, c = a-1 
(a≠0). 

5. Commutative; For every a,b in F 
abbaabba **; =+=+     (5) 

6. Distributive; For every a, b, c in F 
;***)( cbcacba +=+     (6) 

 The existence of a multiplicative invers a-1 enables the 
use of division. This is because for a,b,c ∈ F, c = b/a is 
defined as c = b * a-1 . Similarly the existence of an additive 
inverse (-a) enables the use of subtraction. In this case for 
a,b,c ∈ F, c = b – a is defined as c = b + (-a). 
 It can be shown that the set of integers {0, 1, 2, …, p-1} 
where p is prime, together with modulo p addition and 
multiplication forms a field. Such a field is called the finite 
field of order p, or GF(p). In this paper only binary 
arithmetic is considered, where p is constrained to equal 2. 
Arithmetic in GF(2) is therefore defined modulo 2. 
 The BCH codes are a class of cyclic codes whose 
generator polynomial is the product of distinct minimal 
polynomials corresponding to α, α2 , … , α2t, where α ∈ 
GF(2m) is a root of the primitive polynomial p(x). 
 An irreducible polynomial p(x) of degree m is said to be 
primitive if and only if it divides xn + 1 for no n less than 
2m–1. In fact, every binary primitive polynomial p(x) of 
degree m is a factor of x 2m –1 +1. Primitive polynomials of 
every degree exist over every Galois field, and every Galois 
field has a primitive element α. Table 1 gives a list of 
primitive polynomials over GF(2) [Rhee]. 
 

Table 1. Primitive polynomials over GF(2) 
m p(x) m p(x) 
2 x2 + x + 1 7 x7 + x3 + 1 
3 x3 + x + 1 8 x8 + x4 + x3 + x2 + 1 
4 x4 + x + 1 9 x9 + x4 + 1 
5 x5 + x2 + 1 10 x10 + x3 + 1 
6 x6 + x + 1 11 x11 + x2 + 1 

 
 Let mi (x) be the minimal polynomial of  αi . Let c(x) = 
c0 + c1 x + c2 x2 + … + c n-1 x n-1  be a code polynomial with 
coefficients from GF(2). If c(x) has α, α2 , … , α2t as its 
roots, c(x) is then divisible by the minimal polynomials 
m1(x), m2(x), …, m2t(x) of  α, α2, …, α2t . The generator 
polynomial g(x) of the t-error-correcting BCH code of block 
length n = 2m – 1 and rate k/n is the lowest degree 
polynomial over GF(2). Thus, the generator polynomial of 
the code must be the least common multiple of these 
minimal polynomials. That is, 

)}(),...,(),({)( 221 xmxmxmLCMxg t=            (7) 
 
 In general, for any positive integers m ≥ 3 and t < n/2, 
there exists a binary BCH code with parameters of block 
length n = 2m – 1, number of parity-check bits n – k ≤ mt , 
and minimum distance d0 = 2t + 1 ≤ dmin . The designed 
distance of the code is d0 = 2t + 1. The minimum distance 
dmin may be larger than d0. The following steps are used to 
determine the BCH codes [Rhee]. 
1. Choose a primitive polynomial of degree m, and 

construct GF(2m). 
2. Find the minimal polynomial mi(x) of αi for i = 

1,2,…,2t. 
3. Obtain g(x). 
4. Determine k from n – k, which is the degree of g(x). 
5. Find the minimum distance d min ≥ 2t + 1 by referring 

to the weight of g(x). 
 

Suppose that a code word c(x) is transmitted and that 
because of the channel error e(x), the received word r(x) is 

)()()( xexcxr +=               (8) 
e(x) is called the error pattern. No more than t coefficients 
of e(x) are nonzero. Suppose that ν, 1 ≤ ν ≤ t, errors actually 
occur and they occur in unknown locations j1 , j2, …, jν , that 
is, 

10,)(
1

−≤≤= ∑
=

njxxe j
λ

ο

λ

λ                  (9) 

Since α, α2 , … , α2t are roots of each code polynomial, 
c(αi)=0 , for 1 ≤ i ≤ 2t. Therefore, from Equation (8), it 
follows that 

tier ii 2,...,2,1),()( == αα       (10) 
 

The decoding of a received BCH word requires that 
three successive computational processed performed over 
GF(2m) be executed. These processes are the syndrome 
computations, error-locator polynomial determination, and 
the Chien search (with error-value computational for 
nonbinary codes).  

 
Syndrome Computations 
 The first step in decoding a t-error-correction BCH code 
is to compute the 2t syndrome components s1 , s2 ,…, s2t. 
These syndrome components may be obtained by 
substituting the field elements α, α2 , … , α2t into the 
received polynomial r(x). Thus, the ith component of the 
syndrome is [Shu Lin] 
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 The syndrome components are a function of the field 
elements of GF(2m). Thus, each syndrome component is 
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computed by dividing r(x) by the minimal polynomial mi(x), 
1 ≤ i ≤ 2t, of αi such that 

)}()()()( xxmxqxr iii γ+=                            (12) 
The remainder γi(x), where x = αi , is the syndrome 
component si since mi (αi) = 0. Thus, in general, computing 
r(αi) is equivalent to computing γi(αi). Hence, if it is 
combined with Equation (10), the syndrome component is 
expressed as 

tiers iii
ii 2,...,2,1),()()( ==== αααγ      (13) 

from which we see that the syndrome s depends only on the 
error pattern e. It thus follows that we have a set of 
equations that relate the syndrome components and 
unknown parameters (the error-location numbers) αjλ, 
1≤λ≤ν. 

tis ij
i 21,)(

1
≤≤= ∑

=

υ

λ

λα                      (14) 

Consequently, the decoding algorithm of the BCH codes is 
the way to solve these power sum symmetric functions 
(Equation 14) and to find the unknown numbers αjλ, 1≤λ≤ν, 
from the syndrome components si. 
 
The Error-Locator Polynomial 
 Suppose that ν ≤ t errors actually occur. The error-
locator polynomial σ(x) be 

)1)...(1)(1()(
...)(
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by letting βλ = αjλ for simplicity. Its coefficients and the 
error-location numbers are related by the following set of 
equations  [Rhee] : 
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 The σi , 0 ≤ i ≤ ν, are closely related to the syndrome 
components sj , 1 ≤ j ≤ ν+1 [Rhee]. The algorithm for 
finding σ(x) for the error correction of t = 1 random error is 
summarized as follows [Rhee]. 
1. σ(x) = 1, s1 = s3 = 0 for no error. 
2. σ(x) = 1 + s1 x, s1 ≠ 0, s3 = s1

3 , for a lone error. 
 

III. EXPERIMENTAL RESULTS 
 
Consider the single-error-correcting (7,4) BCH code. 

Let  α be a primitive element of the Galois field GF(23) 
such that 1 + α + α3 = 0. If mi (x), i = 1,2, …, 6, denote the 
minimal polynomials of αi , which are the elements of 
GF(23 ), we then have the list given by Table 2. 
 The generator polynomial of the (7,4) BCH code can be 
given by 

1)(

)()(
)}(),({)(

3
1

21

++=

=
=

xxxg
xmxg

xmxmLCMxg
            

 
Table 2. Minimal polynomials of the elements in GF(23) 

Ele-
ments 

Conjugates Minimal polynomials 

α α2 , α4  x3 + x + 1 
α2 α4 , α8 = α x3 + x + 1 
α3 α6 , α12=α5 x3 + x2 + x + 1 
α4 α8=α, α16=α2  x3 + x + 1 
α5 α10=α3,α20=α6 x3 + x2 + x + 1 
α6 α12 =α5 , α24=α3 x3 + x2 + x + 1 

 
Figure 1 shows the encoder [Rhee].  
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Sequence input data

+
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Fig.1. BCH Encoding logic algorithm 

 
Based on Figure 1, the encoding circuit for the (7,4) 

BCH code is easily implemented as shown in Figure 2. The 
output of figure 2 is a serial bit of 7 bit data generated by 
BCH encoder. The input data is 4 bits.  
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Fig.2. BCH Encoding Logic Circuit implemented in FPGA 

 
 Let r(x) be the received polynomial. To compute the 
syndrome digits, we divide r(x) by m1(x), and the remainder  
γ(x) is assumed to be  γ(x)=γ0 + γ1x + γ2 x2. Substituting  α 
and α2 into γ(x), we obtain 
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For a single-bit correction the syndrome logic algorithm is 
shown in figure 3 and the logic circuit is in figure 4. 
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The error-locator polynomial: 
xsxxx 1110 11)( +=+=+= βσσσ                

Only when s1 ≠ 0 and s3 = s1
3. 

Finally, if no error in r(x) exist, the decoder generates no 
syndromes. Therefore, the error-locator polynomial simply 
becomes σ(x) = 1. It can be done in hardware using Chien’s 
searching unit shown in Figure 5.Implementation on FPGA 
of Figure 5 shown in Figure 6. 

Circuit design and simulation has been done in OrCAD 
Version 9.1, before it is implemented in FPGA Xilinx 
XC4013. The result show that the circuits work well, any 1 
bit error in any position of 7 bits has been corrected.  Our 
next project is to build 3 bits error correction of 5 bit data, 
and BCH code size will be 15 bits.   To justify the work we 
have done, we attached the encoding and decoding circuit of 
BCH codes. This circuit comprises of three parts, which are 
BCH encoding unit, Syndrome Unit, and Chien’s error-
location searching unit. 

 
IV. CONCLUSIONS 

 
The circuits work well, any 1 bit error in any position of 

7 bits has been corrected.  Our next project is to build 3 bits 
error correction of 5 bit data, and BCH code size will be 15 

bits.   To justify the work we have done, we attached the 
encoding and decoding circuit of BCH codes. This circuit 
comprises of three parts, which are BCH encoding unit, 
Syndrome Unit, and Chien’s error-location searching unit. 
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Fig.4.   Syndrome Logic Circuit in FPGA 
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Fig.5.  Chien’s Error location searching Unit 
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Fig.6.   Implementation on FPGA of figure 5  


