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Abstract— This paper considers the prototyping of a BCH
(Bose, Chaudhuri, and Hocquenghem) encoder and
decoder using FPGA (Field Programmable Gate Array).
BCH codes can be defined by two parameters that are
code size n and the number of errors to be corrected ¢
FPGA is a reprogramable chip. Designing on FPGA is
very fast, easy to modify and suitable for prototyping
products. This research is our preliminary research on
implementation BCH coding in FPGA.

The results show that the circuits work well, any 1
bit error in any position of 7 bits has been corrected.
Our next project is to build 3 bits error correction of 5
bit data, and BCH code size will be 15 bits.
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[. INTRODUCTION

rror Correcting Control is very important in modern

communication systems. There are two correcting
codes, that are BCH (Bose, Chaudhuri, and Hocquenghem)
and RS (Reed-Solomon) codes, are being widely used in
satellite communications, computer networks, magnetic and
optic storage systems.

This paper considers the prototyping of a BCH encoder
and decoder using FPGA (Field Programmable Gate
Array). BCH codes operate over finite fields or Galois
fields. BCH codes can be defined by two parameters that
are code size n and the number of errors to be corrected .
BCH codes employ sophisticated algorithm and their
hardware implementation is rather burdensome. For
software implementation is rather slow, consumes more
power and less reliable than hardware implementation [1].

FPGA is a reprogramable chip. A design in FPGA can
be automatically converted from gate level into layout
structure by place and route software. Xilinx Inc. offer a
wide range of components, for example, XC4013 offer
13,000 equivalent Nand gates on 546 CLBs (Configured

Logic Blocks). Designing on FPGA is very fast, easy to
modify and suitable for prototyping products, because they
are rather expensive and therefore are not economical for
mass production [2]. Using ASIC (Application Specific
Integrated Circuit) implementation might be more
appropriate for mass-products, but designing with ASIC is
more complex and takes much longer time.

The importance of BCH codes stems from the fact that
they are capable of correcting all random patterns of t errors
by decoding algorithm that is simple and easily
implemented with a reasonable amount of equipment
[Rhee].

This research is our preliminary research on
implementation BCH coding in FPGA. To simplify the
circuit design we have developed one bit correcting circuit.
For one bit correction, BCH code need to generate 3 bits
parity for 4 bits data, so the length word or code size is 7
bits, this mode usually called (7,4) BCH code.

II. BASIC THEORY

Error control codes rely to a large extent on powerful
and elegant algebraic structures called finite fields. A field
is essentially a set of elements in which it is possible to add,
subtract, multiply and divide field elements and always
obtain another element within the set. A finite field is a field
containing a finite number of elements.

A field F is a non-empty set of elements with two
operators usually called addition and multiplication,
denoted “+” and “*” respectively. For F to be a field a
number of conditions must hold [Shu Lin] :

1. Closure; For every a,b in F

c=a+b;d=a*b )
Wherec, d € F.
2. Associative; For every a,b,c in F
a+(b+c)=(a+b)+c; ?)

a*(b*c)=(a*b)*c
3. Identity; There exists an identity element ‘0’ for addition
and ‘1’ for multiplication that satisfy
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O+a=a+0=a;and 3)
a*l=1*a=a
for every a in F.
4. Inverse; If a is in F, there exist elements b and ¢ in F
such that
a+b=0;a*c=1 “4)
Element b is called the additive inverse, b = (-a),
element ¢ is called the multiplicative invers, ¢ = a”

(a=0).
5. Commutative; For every a,b in F/
a+b=b+a,a*b=b*a 5
6. Distributive; For every a, b, ¢ in F
(a+b)*c=a*c+b*c; (6)

The existence of a multiplicative invers a”’ enables the
use of division. This is because for a,b,c € F, ¢ = b/a is
defined as ¢ = b * 4 . Similarly the existence of an additive
inverse (-a) enables the use of subtraction. In this case for
abc e F,c=b—aisdefinedasc =b + (-a).

It can be shown that the set of integers {0, I, 2, ..., p-1}
where p is prime, together with modulo p addition and
multiplication forms a field. Such a field is called the finite
field of order p, or GF(p). In this paper only binary
arithmetic is considered, where p is constrained to equal 2.
Arithmetic in GF(2) is therefore defined modulo 2.

The BCH codes are a class of cyclic codes whose
generator polynomial is the product of distinct minimal
polynomials corresponding to o, o , ..., &, where a €
GF(2") is a root of the primitive polynomial p(x).

An irreducible polynomial p(x) of degree m is said to be
primitive if and only if it divides x" + I for no n less than
2"—1. In fact, every binary primitive polynomial p(x) of
degree m is a factor of x "' +1. Primitive polynomials of
every degree exist over every Galois field, and every Galois
field has a primitive element «. Table 1 gives a list of
primitive polynomials over GF(2) [Rhee].

Table 1. Primitive polynomials over GF(2)

m p) m px)

2 | x*+x+1 7 x +x°+1

3 x°+x+1 8 PP+
4 | x*+x+1 9 x +xt+ 1

5] x+x+1 10 [x"+x+1

6 | xX°+x+1 11 [ x"+x*+1

Let m; (x) be the minimal polynomial of ¢ . Let ¢(x) =
coterx+ex + ... +c,x™ bea code polynomial with
coefficients from GF(2). If ¢(x) has o, &, ..., o as its
roots, c(x) is then divisible by the minimal polynomials
my(x), my(x), ..., my(x)of @ o, .., &' . The generator
polynomial g(x) of the ¢-error-correcting BCH code of block
length n = 2" — | and rate k/n is the lowest degree
polynomial over GF(2). Thus, the generator polynomial of
the code must be the least common multiple of these
minimal polynomials. That is,
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g(x) = LCM {m,(x), my(x),..., m,,(x)} 0

In general, for any positive integers m > 3 and ¢ < n/2,
there exists a binary BCH code with parameters of block
length n = 2™ — I, number of parity-check bits n — k <mt ,
and minimum distance dy = 2t + 1 <d,;, . The designed
distance of the code is dy = 2t + 1. The minimum distance
d,.i, may be larger than d,. The following steps are used to
determine the BCH codes [Rhee].

1. Choose a primitive polynomial of degree m, and
construct GF(2").

2. Find the minimal polynomial m;x) of o for i =
1,2,..,2t

3. Obtain g(x).

4. Determine k from n — k, which is the degree of g(x).

5. Find the minimum distance d ,,;, > 2t + [ by referring
to the weight of g(x).

Suppose that a code word c(x) is transmitted and that
because of the channel error e(x), the received word 7(x) is
r(x) = c(x) +e(x) ®)
e(x) is called the error pattern. No more than ¢ coefficients
of e(x) are nonzero. Suppose that v, / < v <t, errors actually
occur and they occur in unknown locations j; , j, ..., j, , that
is,

e(x)=> x"*0<j, <n-1 ©)
A=l

Since @, & , ..., " are roots of each code polynomial,
c(d)=0 , for I <i < 2t. Therefore, from Equation (8), it
follows that

ra)=e(a'),i=12,..2t (10)

The decoding of a received BCH word requires that

three successive computational processed performed over
GF(2") be executed. These processes are the syndrome
computations, error-locator polynomial determination, and
the Chien search (with error-value computational for
nonbinary codes).

Syndrome Computations
The first step in decoding a z-error-correction BCH code

is to compute the 2¢ syndrome components s; , S5 ,..., S
These syndrome components may be obtained by
substituting the field elements o, &, ..., o into the

received polynomial r(x). Thus, the ith component of the
syndrome is [Shu Lin]

8= r(ai)

s,=r, (@) +r, (@) T+ +ra + (11)
s, =((r, @ +r, ) +r, ) +.+R)a +7,

1<i<2¢

The syndrome components are a function of the field
elements of GF(2"). Thus, each syndrome component is
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computed by dividing r(x) by the minimal polynomial »,(x),
1 <i <2t, of o such that
r(x):qi(x)mi(x)+7/i(x)} (12)
The remainder y(x), where x = o , is the syndrome
component s; since m; (¢/) = 0. Thus, in general, computing
r(d) is equivalent to computing y(c/). Hence, if it is
combined with Equation (10), the syndrome component is
expressed as
s, =y (@)=r(a)=e@"),i=1.2,.,2t (13)

from which we see that the syndrome s depends only on the
error pattern e. It thus follows that we have a set of
equations that relate the syndrome components and
unknown parameters (the error-location numbers) o,
1<A<v.

s, =y (@) 1<i<2

A=1

Consequently, the decoding algorithm of the BCH codes is
the way to solve these power sum symmetric functions
(Equation 14) and to find the unknown numbers ot 1<A<v,
from the syndrome components s;.

(14)

The Error-Locator Polynomial

Suppose that v < ¢ errors actually occur. The error-
locator polynomial o(x) be

o(x)=0,+ox+0,x +..+0x"

o(x) =1+ px)(1+ fyx)...(1+ f,x)
by letting 8, = &* for simplicity. Its coefficients and the
error-location numbers are related by the following set of
equations [Rhee] :

o, =1

o =p+5+..+0,

0, =Bf+ BB+t B,

(15)

(16)

o, =B py-P,

The o; , 0 <i < v, are closely related to the syndrome
components s; , / <j < v+I [Rhee]. The algorithm for
finding oyx) for the error correction of t = / random error is
summarized as follows [Rhee].

1. ox) =1, s; =s; =0 forno error.
2. ox)=1+s;x 5 %0, 53= s, , for a lone error.

III. EXPERIMENTAL RESULTS

Consider the single-error-correcting (7,4) BCH code.
Let « be a primitive element of the Galois field GF(2°)
suchthat 1+ @+ o = 0. 1fm; (x), i = 1,2, ..., 6, denote the
minimal polynomials of o , which are the elements of
GF(2’ ), we then have the list given by Table 2.

The generator polynomial of the (7,4) BCH code can be
given by
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g(x) = LCM {m,(x),m,(x)}
g(x)=m,(x)
gx)=x"+x+1

Table 2. Minimal polynomials of the elements in GF(2°)

Ele- Conjugates Minimal polynomials
ments

a &, d XHx+1

o ad dl=a X +x+1

o |, d=d CHxHx+1

o7 = = Ctx+1

o a10=0f,a20=a6 X +HxP+x+1

ol 2_ = [ x+1

Figure 1 shows the encoder [Rhee].

Sequence input data

+
Sequence encode
shift shift shift output data
paralel to \/
seriall —>

register

EXOR unt— @

Fig.1. BCH Encoding logic algorithm

Based on Figure 1, the encoding circuit for the (7,4)
BCH code is easily implemented as shown in Figure 2. The
output of figure 2 is a serial bit of 7 bit data generated by
BCH encoder. The input data is 4 bits.

Fig.2. BCH Encoding Logic Circuit implemented in FPGA

Let r(x) be the received polynomial. To compute the
syndrome digits, we divide r(x) by m,(x), and the remainder
#(x) is assumed to be y(x)=y + y7x + 7 x°. Substituting o
and o into y(x), we obtain

r(@)=s =)/0+)/10l+7/20(2

7/(“2) =5 :70+71a2 +72a4
=7, + 1,0+ (y, +7,)a’, respectively.

For a single-bit correction the syndrome logic algorithm is
shown in figure 3 and the logic circuit is in figure 4.
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The error-locator polynomial:
o(x)=0,+ox=1+Fx=1+sx
Only when s; #0 and 53 = 5P
Finally, if no error in r(x) exist, the decoder generates no
syndromes. Therefore, the error-locator polynomial simply
becomes ofx) = 1. It can be done in hardware using Chien’s
searching unit shown in Figure 5.Implementation on FPGA
of Figure 5 shown in Figure 6.

Circuit design and simulation has been done in OrCAD
Version 9.1, before it is implemented in FPGA Xilinx
XC4013. The result show that the circuits work well, any 1
bit error in any position of 7 bits has been corrected. Our
next project is to build 3 bits error correction of 5 bit data,
and BCH code size will be 15 bits. To justify the work we
have done, we attached the encoding and decoding circuit of
BCH codes. This circuit comprises of three parts, which are
BCH encoding unit, Syndrome Unit, and Chien’s error-
location searching unit.

IV. CONCLUSIONS

The circuits work well, any 1 bit error in any position of
7 bits has been corrected. Our next project is to build 3 bits
error correction of 5 bit data, and BCH code size will be 15
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bits. To justify the work we have done, we attached the
encoding and decoding circuit of BCH codes. This circuit
comprises of three parts, which are BCH encoding unit,
Syndrome Unit, and Chien’s error-location searching unit.

REFERENCES

[1] B. Sutopo, “Designing 4 point Winograd small FFT on
FPGA”, Quality in Research Seminar, University of
Indonesia, 2000.

[2] E. Jamro, “The Design of VHDL Based Synthesis Tool for
BCH Codecs”, M.Phil Thesis, School of Engineering, The
University of Huddersfield, 1997.

[3] M.Y. Rhee, “Error Correcting Coding Theory”, McGraw-Hill,
Singapore, 1989.

[4] S. Lin, and D.J. Costello, Jr., “Error Control Coding”, Prentice-
Hall, New Jersey, 1983.

Sequence input data

\ shift

shift shift

Fig.3. Syndrome Unit

Fig.4.
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Fig.5. Chien’s Error location searching Unit

shift
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Fig.6. Implementation on FPGA of figure 5
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