
Proc. of the International Conf. on Electrical, Electronics, Communication, and Information
CECI’2001, March 7-8, Jakarta

Designing 1 bit Error Correcting Circuit on FPGA
Using BCH Codes

Sri Suning Kusumawardani*, and Bambang Sutopo†,IEEE

* Dept. of Electrical Engineering, Fac. of Engineering, Gadjah Mada University, Jl. Grafika 2, Yogyakarta 55284

Tel. 879505, fax. 879506 email : suning@te.ugm.ac.id
† Dept. of Electrical Engineering, Fac. of Engineering, Gadjah Mada University, Jl. Grafika 2, Yogyakarta 55284

Tel. 879505, fax. 879506 email : bsutopo@te.ugm.ac.id

Abstract– This paper considers the prototyping of a BCH
(Bose, Chaudhuri, and Hocquenghem) encoder and
decoder using FPGA (Field Programmable Gate Array).
BCH codes can be defined by two parameters that are
code size n and the number of errors to be corrected t.
FPGA is a reprogramable chip. Designing on FPGA is
very fast, easy to modify and suitable for prototyping
products. This research is our preliminary research on
implementation BCH coding in FPGA.

The results show that the circuits work well, any 1
bit error in any position of 7 bits has been corrected.
Our next project is to build 3 bits error correction of 5
bit data, and BCH code size will be 15 bits.

Keywords– BCH codes, encoding, decoding, FPGA, error
correcting codes

I. INTRODUCTION

rror Correcting Control is very important in modern
communication systems. There are two correcting

codes, that are BCH (Bose, Chaudhuri, and Hocquenghem)
and RS (Reed-Solomon) codes, are being widely used in
satellite communications, computer networks, magnetic and
optic storage systems.

This paper considers the prototyping of a BCH encoder
and decoder using FPGA (Field Programmable Gate
Array). BCH codes operate over finite fields or Galois
fields. BCH codes can be defined by two parameters that
are code size n and the number of errors to be corrected t.
BCH codes employ sophisticated algorithm and their
hardware implementation is rather burdensome. For
software implementation is rather slow, consumes more
power and less reliable than hardware implementation [1].

 FPGA is a reprogramable chip. A design in FPGA can
be automatically converted from gate level into layout
structure by place and route software. Xilinx Inc. offer a
wide range of components, for example, XC4013 offer
13,000 equivalent Nand gates on 546 CLBs (Configured

Logic Blocks). Designing on FPGA is very fast, easy to
modify and suitable for prototyping products, because they
are rather expensive and therefore are not economical for
mass production [2]. Using ASIC (Application Specific
Integrated Circuit) implementation might be more
appropriate for mass-products, but designing with ASIC is
more complex and takes much longer time.

The importance of BCH codes stems from the fact that
they are capable of correcting all random patterns of t errors
by decoding algorithm that is simple and easily
implemented with a reasonable amount of equipment
[Rhee].

This research is our preliminary research on
implementation BCH coding in FPGA. To simplify the
circuit design we have developed one bit correcting circuit.
For one bit correction, BCH code need to generate 3 bits
parity for 4 bits data, so the length word or code size is 7
bits, this mode usually called (7,4) BCH code.

II. BASIC THEORY

 Error control codes rely to a large extent on powerful
and elegant algebraic structures called finite fields. A field
is essentially a set of elements in which it is possible to add,
subtract, multiply and divide field elements and always
obtain another element within the set. A finite field is a field
containing a finite number of elements.
 A field F is a non-empty set of elements with two
operators usually called addition and multiplication,
denoted “+” and “*” respectively. For F to be a field a
number of conditions must hold [Shu Lin] :
1. Closure; For every a,b in F

badbac *; =+= (1)
 Where c, d ∈ F.
2. Associative; For every a,b,c in F

cbacba
cbacba

)()*(*
;)()(

=
++=++ (2)

3. Identity; There exists an identity element ‘0’ for addition
and ‘1’ for multiplication that satisfy

E

Proc. of the International Conf. on Electrical, Electronics, Communication, and Information
CECI’2001, March 7-8, Jakarta

aaa
andaaa

==
=+=+

11
;00 (3)

 for every a in F.
4. Inverse; If a is in F, there exist elements b and c in F

such that
1*;0 ==+ caba (4)

Element b is called the additive inverse, b = (-a),
element c is called the multiplicative invers, c = a-1
(a≠0).

5. Commutative; For every a,b in F
abbaabba **; =+=+ (5)

6. Distributive; For every a, b, c in F
;***)(cbcacba +=+ (6)

 The existence of a multiplicative invers a-1 enables the
use of division. This is because for a,b,c ∈ F, c = b/a is
defined as c = b * a-1 . Similarly the existence of an additive
inverse (-a) enables the use of subtraction. In this case for
a,b,c ∈ F, c = b – a is defined as c = b + (-a).
 It can be shown that the set of integers {0, 1, 2, …, p-1}
where p is prime, together with modulo p addition and
multiplication forms a field. Such a field is called the finite
field of order p, or GF(p). In this paper only binary
arithmetic is considered, where p is constrained to equal 2.
Arithmetic in GF(2) is therefore defined modulo 2.
 The BCH codes are a class of cyclic codes whose
generator polynomial is the product of distinct minimal
polynomials corresponding to α, α2 , … , α2t, where α ∈
GF(2m) is a root of the primitive polynomial p(x).
 An irreducible polynomial p(x) of degree m is said to be
primitive if and only if it divides xn + 1 for no n less than
2m–1. In fact, every binary primitive polynomial p(x) of
degree m is a factor of x 2m –1 +1. Primitive polynomials of
every degree exist over every Galois field, and every Galois
field has a primitive element α. Table 1 gives a list of
primitive polynomials over GF(2) [Rhee].

Table 1. Primitive polynomials over GF(2)
m p(x) m p(x)
2 x2 + x + 1 7 x7 + x3 + 1
3 x3 + x + 1 8 x8 + x4 + x3 + x2 + 1
4 x4 + x + 1 9 x9 + x4 + 1
5 x5 + x2 + 1 10 x10 + x3 + 1
6 x6 + x + 1 11 x11 + x2 + 1

 Let mi (x) be the minimal polynomial of αi . Let c(x) =
c0 + c1 x + c2 x2 + … + c n-1 x n-1 be a code polynomial with
coefficients from GF(2). If c(x) has α, α2 , … , α2t as its
roots, c(x) is then divisible by the minimal polynomials
m1(x), m2(x), …, m2t(x) of α, α2, …, α2t . The generator
polynomial g(x) of the t-error-correcting BCH code of block
length n = 2m – 1 and rate k/n is the lowest degree
polynomial over GF(2). Thus, the generator polynomial of
the code must be the least common multiple of these
minimal polynomials. That is,

)}(),...,(),({)(221 xmxmxmLCMxg t= (7)

 In general, for any positive integers m ≥ 3 and t < n/2,
there exists a binary BCH code with parameters of block
length n = 2m – 1, number of parity-check bits n – k ≤ mt ,
and minimum distance d0 = 2t + 1 ≤ dmin . The designed
distance of the code is d0 = 2t + 1. The minimum distance
dmin may be larger than d0. The following steps are used to
determine the BCH codes [Rhee].
1. Choose a primitive polynomial of degree m, and

construct GF(2m).
2. Find the minimal polynomial mi(x) of αi for i =

1,2,…,2t.
3. Obtain g(x).
4. Determine k from n – k, which is the degree of g(x).
5. Find the minimum distance d min ≥ 2t + 1 by referring

to the weight of g(x).

Suppose that a code word c(x) is transmitted and that
because of the channel error e(x), the received word r(x) is

)()()(xexcxr += (8)
e(x) is called the error pattern. No more than t coefficients
of e(x) are nonzero. Suppose that ν, 1 ≤ ν ≤ t, errors actually
occur and they occur in unknown locations j1 , j2, …, jν , that
is,

10,)(
1

−≤≤= ∑
=

njxxe j
λ

ο

λ

λ (9)

Since α, α2 , … , α2t are roots of each code polynomial,
c(αi)=0 , for 1 ≤ i ≤ 2t. Therefore, from Equation (8), it
follows that

tier ii 2,...,2,1),()(== αα (10)

The decoding of a received BCH word requires that
three successive computational processed performed over
GF(2m) be executed. These processes are the syndrome
computations, error-locator polynomial determination, and
the Chien search (with error-value computational for
nonbinary codes).

Syndrome Computations
 The first step in decoding a t-error-correction BCH code
is to compute the 2t syndrome components s1 , s2 ,…, s2t.
These syndrome components may be obtained by
substituting the field elements α, α2 , … , α2t into the
received polynomial r(x). Thus, the ith component of the
syndrome is [Shu Lin]

ti
rrrrrs

rrrrs
rs

ii
n

i
n

i
ni

ini
n

ni
ni

i
i

21
)...))(...((

...)()(

)(

01321

01
2

2
1

1

≤≤
+++++=

++++=

=

−−−

−
−

−
−

αααα

ααα

α

 (11)

 The syndrome components are a function of the field
elements of GF(2m). Thus, each syndrome component is

Proc. of the International Conf. on Electrical, Electronics, Communication, and Information
CECI’2001, March 7-8, Jakarta

computed by dividing r(x) by the minimal polynomial mi(x),
1 ≤ i ≤ 2t, of αi such that

)}()()()(xxmxqxr iii γ+= (12)
The remainder γi(x), where x = αi , is the syndrome
component si since mi (αi) = 0. Thus, in general, computing
r(αi) is equivalent to computing γi(αi). Hence, if it is
combined with Equation (10), the syndrome component is
expressed as

tiers iii
ii 2,...,2,1),()()(==== αααγ (13)

from which we see that the syndrome s depends only on the
error pattern e. It thus follows that we have a set of
equations that relate the syndrome components and
unknown parameters (the error-location numbers) αjλ,
1≤λ≤ν.

tis ij
i 21,)(

1
≤≤= ∑

=

υ

λ

λα (14)

Consequently, the decoding algorithm of the BCH codes is
the way to solve these power sum symmetric functions
(Equation 14) and to find the unknown numbers αjλ, 1≤λ≤ν,
from the syndrome components si.

The Error-Locator Polynomial
 Suppose that ν ≤ t errors actually occur. The error-
locator polynomial σ(x) be

)1)...(1)(1()(
...)(

21

2
210

xxxx
xxxx

υ

υ
υ

βββσ
σσσσσ
+++=
++++= (15)

by letting βλ = αjλ for simplicity. Its coefficients and the
error-location numbers are related by the following set of
equations [Rhee] :

υυ

υυ

υ

βββσ

ββββββσ
βββσ

σ

...
...

...
...

1

21

132212

211

0

=

+++=
+++=

=

−

 (16)

 The σi , 0 ≤ i ≤ ν, are closely related to the syndrome
components sj , 1 ≤ j ≤ ν+1 [Rhee]. The algorithm for
finding σ(x) for the error correction of t = 1 random error is
summarized as follows [Rhee].
1. σ(x) = 1, s1 = s3 = 0 for no error.
2. σ(x) = 1 + s1 x, s1 ≠ 0, s3 = s1

3 , for a lone error.

III. EXPERIMENTAL RESULTS

Consider the single-error-correcting (7,4) BCH code.

Let α be a primitive element of the Galois field GF(23)
such that 1 + α + α3 = 0. If mi (x), i = 1,2, …, 6, denote the
minimal polynomials of αi , which are the elements of
GF(23), we then have the list given by Table 2.
 The generator polynomial of the (7,4) BCH code can be
given by

1)(

)()(
)}(),({)(

3
1

21

++=

=
=

xxxg
xmxg

xmxmLCMxg

Table 2. Minimal polynomials of the elements in GF(23)

Ele-
ments

Conjugates Minimal polynomials

α α2 , α4 x3 + x + 1
α2 α4 , α8 = α x3 + x + 1
α3 α6 , α12=α5 x3 + x2 + x + 1
α4 α8=α, α16=α2 x3 + x + 1
α5 α10=α3,α20=α6 x3 + x2 + x + 1
α6 α12 =α5 , α24=α3 x3 + x2 + x + 1

Figure 1 shows the encoder [Rhee].

shift shiftshift+

Sequence input data

+

paralel to
serial

register

+EXOR unit

Sequence encode
output data

Fig.1. BCH Encoding logic algorithm

Based on Figure 1, the encoding circuit for the (7,4)

BCH code is easily implemented as shown in Figure 2. The
output of figure 2 is a serial bit of 7 bit data generated by
BCH encoder. The input data is 4 bits.

data

U12

IBUF

U8

OR2

U20

OPAD

clk

U3

XOR2

U15

IPAD

U7

AND2

U1

AND2

D Q

CLRC

U5

FDC

U13

IBUF
U14

IBUF

U18

IPAD

U2

XOR2

D Q

CLRC

U4

FDC

U17

IPAD

U9

AND2

D Q

CLRC

U6

FDC

U19

OBUF

clr

U10

INV

encout

U11

IBUF

U16

IPAD

cecod

Fig.2. BCH Encoding Logic Circuit implemented in FPGA

 Let r(x) be the received polynomial. To compute the
syndrome digits, we divide r(x) by m1(x), and the remainder
γ(x) is assumed to be γ(x)=γ0 + γ1x + γ2 x2. Substituting α
and α2 into γ(x), we obtain

.,)(

)(

)(

2
2120

4
2

2
102

2

2
2101

lyrespective

s
s

αγγαγγ

αγαγγαγ

αγαγγαγ

+++=

++==

++==

For a single-bit correction the syndrome logic algorithm is
shown in figure 3 and the logic circuit is in figure 4.

Proc. of the International Conf. on Electrical, Electronics, Communication, and Information
CECI’2001, March 7-8, Jakarta

The error-locator polynomial:
xsxxx 1110 11)(+=+=+= βσσσ

Only when s1 ≠ 0 and s3 = s1
3.

Finally, if no error in r(x) exist, the decoder generates no
syndromes. Therefore, the error-locator polynomial simply
becomes σ(x) = 1. It can be done in hardware using Chien’s
searching unit shown in Figure 5.Implementation on FPGA
of Figure 5 shown in Figure 6.

Circuit design and simulation has been done in OrCAD
Version 9.1, before it is implemented in FPGA Xilinx
XC4013. The result show that the circuits work well, any 1
bit error in any position of 7 bits has been corrected. Our
next project is to build 3 bits error correction of 5 bit data,
and BCH code size will be 15 bits. To justify the work we
have done, we attached the encoding and decoding circuit of
BCH codes. This circuit comprises of three parts, which are
BCH encoding unit, Syndrome Unit, and Chien’s error-
location searching unit.

IV. CONCLUSIONS

The circuits work well, any 1 bit error in any position of

7 bits has been corrected. Our next project is to build 3 bits
error correction of 5 bit data, and BCH code size will be 15

bits. To justify the work we have done, we attached the
encoding and decoding circuit of BCH codes. This circuit
comprises of three parts, which are BCH encoding unit,
Syndrome Unit, and Chien’s error-location searching unit.

REFERENCES

[1] B. Sutopo, “Designing 4 point Winograd small FFT on

FPGA”, Quality in Research Seminar, University of
Indonesia, 2000.

[2] E. Jamro, “The Design of VHDL Based Synthesis Tool for
BCH Codecs”, M.Phil Thesis, School of Engineering, The
University of Huddersfield, 1997.

[3] M.Y. Rhee, “Error Correcting Coding Theory”, McGraw-Hill,
Singapore, 1989.

[4] S. Lin, and D.J. Costello, Jr., “Error Control Coding”, Prentice-

Hall, New Jersey, 1983.

shift shiftshift++

Sequence input data

s1

Fig.3. Syndrome Unit

U21

OBUF

out00

U26

IPAD

D Q

CLRC

U4

FDC

U30

OPAD

U13

IBUF

U27

OPAD

U24

IPAD

out0

trm

U1

XOR2 D Q

CLRC

U5

FDC

out02

ctrl

U9

AND2

U29

OPAD

U14

IBUF

U2

XOR2

out2

U20

OBUF

U32

OPAD

U15

IBUF

U23

IPAD

U8

AND2

rst

out01

clk

U6

AND2

U12

AND2

U18

OBUF

U10

XOR2

U16

IBUF

D Q

CLRC

U3

FDC

U11

AND2

U22

OBUF

U7

AND2

U19

OBUF

out1

U31

OPAD

U17

OBUF

U25

IPAD

U28

OPAD

Fig.4. Syndrome Logic Circuit in FPGA

Proc. of the International Conf. on Electrical, Electronics, Communication, and Information
CECI’2001, March 7-8, Jakarta

shift shiftshift++

+

Error locater pointer

Fig.5. Chien’s Error location searching Unit

U4

INV

D Q

CLRC

U9

FDC

U20

IBUF

clr

D Q

CLRC

U13

FDC

U27

IPAD

ctrl

U21

IBUF

U23

OBUF

U17

IBUF

U1

AND2

U8

AND2

U19

IBUF

out
in0

in1

U5

OR2

U6

OR2

U15

NOR3

U25

IPAD

U16

INV

U12

AND2

in2

U2

AND2

U22

IBUF

D Q

CLRC

U11

FDC

U24

IPAD

U14

XOR2

clk

U7

OR2

U26

IPAD

U29

IPAD

U30

OPAD

U3

AND2

U18

IBUF

U28

IPAD

U10

AND2

Fig.6. Implementation on FPGA of figure 5

